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Abstract
The recent experimental support for the presence of the Fulde–Ferrell–Larkin–Ovchinnikov
(FFLO) phase in CeCoIn5 directed attention towards the mechanisms responsible for this type
of superconductivity. We investigate the FFLO state in a model where on-site/inter-site pairing
coexists with the repulsive pair hopping interaction. The latter interaction is interesting in that it
leads to pairing with non-zero momentum of the Cooper pairs even in the absence of the
external magnetic field (the so-called η pairing). It turns out that, depending on the strength of
the pair hopping interaction, the magnetic field can induce one of two types of the FFLO phase
with different spatial modulations of the order parameter. It is argued that the properties of the
FFLO phase may give information about the magnitude of the pair hopping interaction. We also
show that η pairing and d-wave superconductivity may coexist in the FFLO state. It holds true
also for superconductors which, in the absence of magnetic field, are of pure d-wave type.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

An unconventional superconducting state with a non-zero total
momentum of the Cooper pairs was predicted by Fulde and
Ferrell [1] as well as by Larkin and Ovchinnikov [2] in the mid-
1960s. Under particular conditions, this phase should occur at
low temperatures and in strong magnetic fields. Due to the
severe requirements for the formation of the FFLO state, this
type of superconductivity has experimentally been observed
only recently. In the FFLO state the superconducting order
parameter (OP) oscillates in real space. This property, to
some extent, resembles the unconventional superconductivity
in strongly correlated systems [3], where the OP changes sign
in the momentum space. The FFLO state has recently been
analyzed in the context of heavy fermion systems [4–17],
organic superconductors [18, 19], ultracold atoms [20, 21]
and dense nuclear matter [22–24]. Although there is no
direct experimental evidence for the spatial variation of the
OP, suggestions for future experiments have been developed
in [9, 25, 26].

The orbital (diamagnetic) pair breaking is a crucial
mechanism that limits realization of the FFLO state. In the

vast majority of superconducting materials it is a dominating
pair breaking mechanism that destroys superconductivity
for magnetic fields much weaker than the Clogston–
Chandrasekhar limit (H CC) [27, 28]. It holds true also for
models appropriate to describe the short coherence length
superconductors [29–31]. The significance of the diamagnetic
pair breaking is usually described in terms of the Maki
parameter α = √

2H orb
c2 /H CC, where H orb

c2 is the upper
critical field calculated without Zeeman splitting. There exist
two general possibilities to reduce the destructive role of
the orbital pair breaking. In the layered superconductors,
formation of Landau orbits should be suppressed for magnetic
fields applied parallel to the layers. This may explain
possible observations of the FFLO state in some organic
superconductors [18, 19]. The role of orbital pair breaking
should also be limited in systems with narrow energy bands,
like heavy fermion systems. The experimental evidence for
the FFLO superconductivity in these systems seems to be the
strongest [4–15].

In the context of recent investigations of the FFLO state,
it is important to search for other mechanisms that stabilize
superconductivity against the orbital pair breaking. Recently
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it has been found that superconductivity originating from the
repulsive pair hopping interaction is unique in that it is robust
against this pair breaking mechanism [32]. The origin of this
interaction may vary in different systems and therefore we do
not specify a particular superconductor for which the following
qualitative analysis can be directly applied. The repulsive pair
hopping interaction can be derived from a general microscopic
tight-binding Hamiltonian [33], but in this case the magnitude
of the interaction is very small. However, since this interaction
leads to superconductivity that is almost unaffected by the
orbital effects, it may become more important close to the
upper critical field, i.e. in the regime where the FFLO phase
is expected to occur. We may also consider other sources of
the pair hopping which give rise to much larger magnitudes of
this interaction. For example, such a term may be included in
the effective Hamiltonian describing Fermi gas in an optical
lattice in the strong interaction regime [34, 35]. It also arises in
a natural way in multiorbital models [36], though then the pairs
hop between different orbitals on the same site. Nevertheless,
we expect that some of our conclusions can still be valid.
The role of the pair hopping interaction in a multiorbital
model is of particular interest because of its presence in the
recently discovered iron pnictides [37]. Additionally, if the
on-site repulsion exceeds the gap between the lowest and the
next-lowest bands in the optical lattice, then the interband
pair hopping seems to be important. Very recent quantum
Monte Carlo calculations for TMTSF-salt [38] also suggest a
significant role of the pair hopping processes in this system,
which, on the other hand, probably exhibits the FFLO phase at
high field [19, 39].

In the absence of magnetic field, the pair hopping
interaction is responsible for the η-type pairing where the
total momentum of the paired electrons is Q = (π, π)

and the phase of the superconducting order parameter alters
from one site to the neighboring one [40–44]. It has been
shown that flux quantization and the Meissner effect appear
in this state [45, 46]. Therefore, even in the absence of
external magnetic field, the repulsive pair hopping interaction
favors pairing with non-zero momentum of Cooper pairs.
Although the pair hopping may not be the dominating pairing
mechanism, its presence may affect the FFLO phase. In
the following, the superconducting state with zero total
momentum of the Cooper pair will be referred to as the BCS
superconductivity. In that sense, both FFLO and η pairing will
be considered as a non-BCS state.

In the present paper, we analyze the role of the repulsive
pair hopping interaction for the FFLO state. The above-
mentioned systems, where the pair hopping interaction may
play a significant role, exhibit both inter-site pairing (CeCoIn5,
TMTSF) as well as on-site pairing (optical lattice, the iron
pnictides). Therefore, we consider a model where this
interaction coexists with on-site or inter-site pairing potential.
However, we do not refer to any particular system. As the
microscopic mechanism of superconductivity in most of the
unconventional superconductors is still under debate, we do not
discuss the origin of the pairing potentials.

For the system with on-site pairing, the magnetic field
reduces the total momentum of electrons forming Cooper pairs

in the η-pairing state. As a consequence, the amplitude of
the superconducting order parameter becomes a site-dependent
quantity. Recent theoretical investigations of the FFLO phase
in the attractive Hubbard model have been motivated mostly
by the increasing interest in ultracold Fermi gases [47, 48].
These approaches may also be applicable to compounds other
than the strongly correlated heavy fermion systems [49, 50].
Contrary to this, experimental results obtained for CeCoIn5

indicate the anisotropic d-wave pairing. Therefore, in section 4
we study the case of inter-site attractive interaction that is
responsible for the d-wave superconductivity. We show for the
case of inter-site attraction that d-wave and η-pairing orders
may coexist in the FFLO state. Such a coexistence is possible
also for systems which, in the absence of a magnetic field, are
in the pure d-wave state. For on-site and inter-site pairings,
the potential of the pair hopping interaction J is assumed to be
positive.

2. On-site pairing

We start our analysis with a model with on-site pairing inter-
action described by the following tight-binding Hamiltonian:

H = −t
∑

〈i, j〉,σ
c†

iσ c jσ + U
∑

i

c†
i↑ci↑c†

i↓ci↓

+ J
∑

〈i, j〉
c†

i↑c†
i↓c j↓c j↑ −

∑

i,σ

[s(σ )h + μ] c†
iσ ciσ , (1)

where t is the nearest-neighbor hopping integral, J is the pair
hopping interaction, μ is the chemical potential, s(↑) = 1
and s(↓) = −1. The Zeeman coupling is determined by
h = gμBH/2, where g is the gyromagnetic ratio, μB is
the Bohr magneton and H is the external magnetic field.
The Hamiltonian (1) does not include the diamagnetic pair
breaking. We refer to [51–60] for discussion of the influence
of this mechanism on the FFLO state. Here, we focus on the
role of the pair hopping interaction as well as on the properties
of the η pairing that are robust against the orbital pair breaking.
Nevertheless, the role of the orbital pair breaking will be briefly
discussed. In this section we assume the simplest form of the
effective on-site pairing interaction (U < 0) that is responsible
for the s-wave superconductivity.

We apply the mean-field approximation and assume the
order parameter in a general form:

�(R j) ≡ 〈c j↓c j↑〉 =
M∑

m=1

�m exp(iQm ·R j). (2)

Then, the Hamiltonian in the momentum space takes the form

HMF =
∑

kσ

ε̃kσ c†
kσ ckσ

+
M∑

m=1

Ueff(Qm)
∑

k

(
�∗

mc−k+Qm↓ck↑ + h.c.
)

− N
M∑

m=1

Ueff(Qm)|�m|2 (3)

where
ε̃kσ = εk − μ − s(σ )h. (4)
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Figure 1. Phase diagram showing the stable superconducting phases
for various J and h at T = 0. The upper panel shows results
obtained for a square lattice with U = −2.0t , whereas the lower one
shows results for a triangular lattice with U = −2.5t . The dashed
lines are explained in the text.

For arbitrary lattice geometry the dispersion relation is given
by εk = −t/N

∑′
j exp(iR j · k), where the prime means

summation over the nearest-neighbor sites. We have also
introduced an effective pairing potential:

Ueff(Q) = U − JεQ

t
. (5)

For a general form of the order parameter (equation (2))
diagonalization of the mean-field Hamiltonian usually cannot
be reduced to an eigenproblem of a finite Hermitian matrix.
Therefore, we restrict further discussion to two simplest cases.
The first one was originally proposed by Fulde and Ferrel (FF),
whereas the second was by Larkin and Ovchinnikov (LO). In
the former one, it is assumed that M = 1, so the absolute value
of �(R j) is constant, but the phase changes from site to site.
In the latter case M = 2, �1 = �2 and Q1 = −Q2. Then,
one gets �(R j) = 2�0 cos(Q · R j), where we use �0 ≡ �1

and Q ≡ Q1. However, one should keep in mind that at low
temperature and high magnetic field FFLO phases with M > 2
may be thermodynamically more stable [61, 62].

For the FF phase, the mean-field Hamiltonian can be
diagonalized by means of the Bogoliubov transformation.

Straightforward calculations lead to the following form of the
grand canonical potential � = −kT ln Tr exp(−β H ):

� = −kT
∑

α=±

∑

k

ln[1 + exp(−β Ek,α)]

+
∑

k

ε̃−k+Q↓ − NUeff(Q)|�0|2, (6)

where

Ek,± = 1
2

[
ε̃k↑ − ε̃−k+Q↓

±
√(

ε̃k↑ + ε̃−k+Q↓
)2 + 4Ueff(Q)2|�0|2

]
. (7)

In the case of LO superconductivity, the Hamiltonian
cannot be diagonalized analytically. However, the pairing
term links the one-particle states with momenta lying along
a single line in the Brillouin zone. Therefore, one can solve
the resulting eigenproblem numerically for relatively large
clusters. Namely, for an L × L cluster, one has to diagonalize
an 2L × 2L Hermitian matrix.

2.1. Numerical results

We start our discussion with the simplest case M = 1 (FF
state), which allows one to estimate the boundaries of the
non-BCS superconducting phases. However, the presence of
the LO superconductivity will be discussed as well. The
thermodynamically stable phase has been determined through
minimization of the grand canonical potential with respect
to the superconducting order parameter |�0| and Q. The
calculations have been carried out for a square lattice with
μ = 0 as well as for a triangular lattice with μ = 2t . These
chemical potentials correspond to maxima in the density of
states and, therefore, to the highest superconducting transition
temperatures. A comparison of results obtained for both cases
allows one to check the role of the lattice geometry.

First, we focus on the influence of the pair hopping
interaction on the properties of the FFLO phase. Figure 1
shows how the ground state of the system depends on J and h.
In figures 2 (square lattice) and 3 (triangular lattice) we present
the values of Q that minimize � for some particular values
of J and h. In the absence of a magnetic field there are two
stable superconducting phases for both the lattice geometries.
For small J there exists an isotropic BCS phase, which will
be referred to as s-wave superconductivity (see figures 2(a)
and 3(a)). The η-pairing phase occurs for larger J . In the
case of a bipartite square lattice, η pairing corresponds to
the total momentum of Cooper pairs Q = (π, π), where
the phase of the superconducting order parameter changes
from one lattice site to the neighboring one (see figure 2(c)).
Stability of this phase obviously follows from the fact that
the pair hopping interaction involves sites which belong to
different sublattices. Then, the oscillating �i minimizes the
energy of the system for the physically relevant repulsive
interaction. In this context, the problem of η pairing on a non-
bipartite triangular lattice is interesting even in the absence
of a magnetic field [63]. We have found that, also for this
geometry, the repulsive pair hopping interaction may lead to
a thermodynamically stable phase with Q 
= 0. The ground

3
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Figure 2. Grand canonical potential minimized with respect to |�0|
for given Q = (Qx , Qy). We have used the same parameters μ and
U as in figure 1, whereas the values of h and J are shown explicitly
above the small panels. Note the different ranges of Qx and Qy in
various panels. These results have been obtained for a square lattice.

state energy is minimal when Q represents one of the corners
of the hexagonal first Brillouin zone (see figure 3(c)). It is easy
to check that, for such a value of Q, the phase of �i takes on
three different values, namely �i = �0, �i = �0 exp(i 2

3π)

or �i = �0 exp(−i 2
3π), depending on i . In the presence of

a sufficiently strong magnetic field there exist four different
superconducting phases. Apart from the above discussed s-
wave and η-pairing states there are two other phases, which
will be referred to as FFLO1 and FFLO2. Investigation of
the total momenta of Cooper pairs (see panels ‘b’ and ‘d’ in
figures 2 and 3) allows one to link FFLO1 and FFLO2 to s-
wave and η pairing, respectively. Namely, Q obtained for the
FFLO1 is relatively close to the origin of the Brillouin zone,
whereas in the FFLO2 phase Q remains on the edges of the
zone. One can see that the FFLO2 phase occurs for lower
magnetic fields than the FFLO1. FFLO1 evolves from the s-

Figure 3. The same as in figure 2 but for a triangular lattice.

wave superconductivity when a sufficiently strong magnetic
field is applied. It holds true for both the lattice geometries.
On a square lattice, FFLO2 evolves from the η-pairing state
under the same conditions. However, on a triangular lattice this
phase is stable only for moderate values of the pair hopping
interactions as well as for moderate magnetic fields. It is
surprising that increasing the magnetic field may cause two
phase transitions: the first one from s-wave to FFLO2 is
discontinuous and the second from FFLO2 to η pairing is a
continuous transition (see figure 4). We have also found that
the transitions from the s-wave phase to the FFLO1 state are
discontinuous, whereas the transitions from the FFLO1 and
FFLO2 phases to the normal state are continuous. Finally, for
a square lattice the transition from the η-pairing state to the
FFLO2 phase is discontinuous as well. The field dependence
of the superconducting order parameter in various phases can
be inferred from figure 4.

In the absence of pair hopping interactions, it is well
known that the LO phase has a lower ground state energy

4
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Figure 4. |Ueff(Q)�0| as a function of magnetic field. The parameters as well as the lattice geometry are explicitly shown in the figure.

Figure 5. |�0| as a function of magnetic field and temperature for a
square lattice with J = 0.35t .

than the FF one [2]. In our case, this result directly applies
to the FFLO1 phase. We have found that, in the case of the
FFLO2 state with M = 2, it has an energy lower than that
with M = 1. Therefore, also in this case |�i | is spatially
inhomogeneous. This result has been obtained on the basis of
numerical diagonalization of 200 × 200 clusters with periodic
boundary conditions. Consequently, there exists a simple
criterion to distinguish between FFLO1 and FFLO2 phases.
In both cases �i ∼ cos Q · Ri but |Q| � 1 for FFLO1,
whereas |Q| > π for FFLO2. Therefore, the periods of spatial
modulations of the order parameters relevant to FFLO1 and

FFLO2 are very different. In the latter case it is of the order
of the lattice constant. It is instructive to examine in more
detail the spatial modulation of �i in the FFLO2 phase on a
square lattice. As the total momentum of Cooper pairs Q is
close to Π = (π, π), one can introduce Q′ = Π − Q and
note that |Q′| � 1. Then �i ∼ cos[(Π − Q′) · Ri ] =
cos(Π·Ri) cos(Q′·Ri). The spatial profile of �i is determined
by two oscillating functions. Due to the first one the phase of
the superconducting order parameter alters from one site to the
neighboring one. It means that the FFLO2 phase retains the
basic properties of the η-pairing superconductivity. The second
factor is responsible for a slow variation of the magnitude of the
superconducting order parameter |�i |, which is a hallmark of
the LO-type of superconductivity. On the basis of our analysis
one cannot exclude that the FFLO2 phase with M > 2 is
more stable. Therefore, the actual boundaries of the FFLO2
state may cover a slightly wider range of magnetic fields than
presented in figure 1.

Up to this point we have analyzed a two-dimensional
system, where the influence of the orbital pair breaking can
be neglected provided the applied magnetic field is parallel
to the plane. However, if the magnetic field has a non-
zero component perpendicular to the plane, as well as in the
case of three-dimensional systems, the destructive role of the
orbital effects has to be taken into account. This problem
has been analyzed, for example, in [29–32, 51–60]. On the
one hand, it is the dominating pair breaking mechanism for
s-wave and FFLO1 superconductivity [29–31, 51–60]. On
the other hand, it is very ineffective in destroying η-type

5
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Figure 6. Phase diagram for a square lattice showing the stable
superconducting phases for various J and h at T = 0. The upper
panel shows results obtained for V = −2.0t , whereas the lower one
shows results for V = −2.5t .

superconductivity [32]. Therefore, we assume that FFLO2
will also be robust against orbital pair breaking. This property
may lead to significant modifications of the phase diagram
presented in figure 1. Namely, the dashed lines show the
boundaries of the η and FFLO2 types of superconductivity
obtained under the assumption that the s-wave and FFLO1
phase are destroyed by orbital effects. Note that even a
weak pair hopping interaction should lead to the onset of η

and FFLO2 phases for fields sufficiently strong to destroy
the conventional superconductivity. However, this conjectural
result should be confirmed by calculations for the FFLO2
phase with the diamagnetic pair breaking explicitly taken into
account.

Finally, we discuss the standard (kT, h) phase diagram for
a square lattice with J = 0.35t . It is the value of the pair
hopping interaction for which the ground state in the absence of
a magnetic field is the η-type superconductivity (see figure 1).
Figure 5 shows the results. It is interesting that, despite the
unconventional character of the η pairing, the phase diagram
is very similar to the analogous phase diagram for BCS–FFLO
superconductors. Namely, the FFLO2 phase occurs only in the
presence of strong magnetic field and at low temperatures. The

Figure 7. |Ueff(Q)�0| (upper panel) and |V �d | (lower panel) for
various J and h at T = 0. V = −2.5t has been assumed. Dashed
lines show the boundaries of the FFLO1 and FFLO2 phases. In the
upper panel |Ueff(Q)�0| vanishes above the dotted line.

phase transition from the η to FFLO2 phase is discontinuous,
whereas the transition from FFLO2 to the normal state is
continuous.

3. Inter-site pairing

In this section we extend our previous study by allowing for
the anisotropic d-wave superconductivity. In this case, we add
the nearest-neighbor attraction term to the Hamiltonian (1):

H → H + V
∑

〈i, j〉,σ
c†

iσ ciσ c†
j,−σ c j,−σ , (8)

where we assume V < 0. For simplicity, we restrict ourselves
to FF superconductivity on a square lattice. Then, the mean-
field Hamiltonian in the momentum space is

HMF =
∑

kσ

ε̃kσ c†
kσ ckσ

+
∑

k

{[Ueff(Q)�∗
0 + V d(k)�∗

d]c−k+Q↓ck↑

+ h.c.} − NUeff(Q)|�0|2 − 2NV |�d |2, (9)

where �d = 1/(2N)
∑

k d(k)〈c−k+Q↓ck↑〉 and d(k) =
2(cos kx −cos ky). We have assumed that the expectation value
〈c−k+Q↓ck↑〉 is non-zero only for one particular wavevector Q.
In clear contrast to the case discussed in section 2, one has to
introduce two superconducting order parameters �0 and �d

originating from the on-site pairing and the inter-site attraction,

6
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Figure 8. Magnetic field dependence of |Ueff(Q)�0| (a), |V �d | (b), Qx (c) and Qy (d) for T = 0, V = −2.5t and J = 0.3t .

respectively. One can straightforwardly calculate the grand
canonical potential that is of the form

� = −kT
∑

α=±

∑

k

ln[1 + exp(−β Ek,α)] +
∑

k

ε̃−k+Q↓

− NUeff(Q)|�0|2 − 2NV |�d |2 (10)

with the quasiparticle energies Ek,±:

Ek,± = 1
2

{
ε̃k↑ − ε̃−k+Q↓

±
√(

ε̃k↑ + ε̃−k+Q↓
)2 + 4|Ueff(Q)�0 + V d(k)�d |2

}
.

(11)

3.1. Numerical results

The presence of two order parameters �0 and �d makes the
problem numerically much more complicated than for the on-
site pairing potential only. Though the coexistence of the s-
wave and d-wave pairings in the FFLO phase may significantly
enhance the upper critical field [64], for the sake of simplicity
and to avoid too many model parameters we restrict our further
analysis to the case U = 0.

Generally, the grand canonical potential should be
minimized with respect to five variables: two components of
the wavevector Q, magnitudes of two order parameters and
the relative phase φ between �0 and �d . If the orders do
not coexist, i.e. either �0 or �d vanishes, � is independent
of φ. However, in order to analyze whether coexistence is
possible, we have taken φ ∈ {0, π,±π/2} and minimized
� with respect to the remaining variational parameters. The
resulting phase diagram is presented in figure 6. Of course, the
exact boundaries could be a bit different from those presented
in this figure if one allows for an arbitrary value φ.

A sufficiently strong magnetic field drives the system into
the FF state. Depending on the values of Q, one can distinguish

between two phases marked in figure 6 as FFLO1 and FFLO2.
In the former case �d 
= 0, Q = (0, Qy) and Qy � π .
Then, Ueff(Q) is positive and �0 = 0. However, in the FFLO2
state Q = (π, Qy), Qy � π . We have found that in the
FFLO2 phase both the order parameters may simultaneously
be non-zero. This strongly contrasts with the results obtained
in the absence of a magnetic field when the system is either in
the pure d-wave superconducting state or in the pure η-pairing
state. Note that for moderate (presumably realistic) values of
J and in the absence of magnetic field the ground state is of
purely d-wave type.

In order to study the coexisting orders in more detail, we
have calculated |Ueff(Q)�0| (see the upper panel in figure 7)
and |V �d | (see the lower panel in figure 7) in the FFLO2
phase. In figure 8 we present these data for J = 0.3t together
with the field dependence of the wavevector Q. Although
the dominating contribution to the superconducting gap comes
from the d-wave pairing, �0 is non-negligible in the FFLO2
phase. For sufficiently strong inter-site pairing the boundaries
of the FFLO2 phase are almost independent of J , which can
be inferred from the lower panel in figure 6. This result can be
explained in the following way: increase of the magnetic field
shifts the wavevector Q and, in this way, modifies Ueff(Q).
This potential may eventually vanish causing Ueff(Q)�0 = 0
(see panel ‘a’ in figure 8). Then, the upper critical field is
determined only by the inter-site pairing. This effect may
also be responsible for a non-monotonic field dependence of
�d . Neither this non-monotonicity nor J -independent upper
critical field occur for the weaker inter-site attraction, shown in
the upper panel of figure 6. Here, both the order parameters are
non-zero within the entire FFLO2 phase.

4. Concluding remarks

Our aim was to investigate the role of the pair hopping
interaction for FFLO superconductivity. Probably this

7
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interaction is not a dominating pairing mechanism. However,
as we have argued in section 1, in some superconducting
systems it may become important in the high field regime
whether the FFLO phase is expected. Motivated by the pairing
symmetry in these systems we have separately studied two
models where the pair hopping interaction coexists with on-
site and inter-site attractions. In the former case, the pair
hopping interaction lowers the magnetic field corresponding
to the onset of the FFLO state. In the presence of the
inter-site pairing, sufficiently strong magnetic field allows for
a coexistence of d-wave and η-pairing states even though
such a coexistence does not occur in the absence of a
magnetic field. It is instructive to compare this result with
the recent experimental and theoretical data concerning the
coexistence of superconductivity and spin-density waves in
CeCoIn5 [65–67]. One may formulate a general conjecture
that field-induced breaking of the translational invariance of the
superconducting phase gives way to other competing orders.

For a sufficiently strong pair hopping interaction one may
expect an η-pairing state that is robust against the diamagnetic
pair breaking. According to the best of our knowledge this
phase has not been identified in any known superconducting
system. However, upon application of an external magnetic
field such a system should exhibit the FFLO state. In
contradistinction to the BCS type of pairing, this phase should
occur independently of the bandwidth and the orientation of
the magnetic field. Investigating the spatial modulation of the
superconducting order parameter, one can distinguish whether
the FFLO phase originates from BCS or η pairing. In the
first case the period of modulation is much larger than the
lattice constant. In the latter case it is of the order of the
lattice constant and the phase of the order parameter retains its
oscillating character typical for η-pairing superconductivity.
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